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Abstract-A model is developed for the description of the process of particle sublimation or droplet 
evaporation in a gaseous environment. The conservation and closure equations for the process are derived 
and are cast in dimensionless form. The system of equations is solved numerically for the case when the 
mixture of the two phases is subjected to a step increase in wall temperature. The effect of several parameters 
(such as particle sizes, physical properties and size of the wall temperature step) is examined on the rate 
of evaporation of the condensed phase. The temperatures and velocities of the two phases during the phase 

change are also calculated and reported. 

INTRODUCTION 

THE SUBJECT of heat transfer in suspensions was first 
examined in the 196Os, when suspensions were con- 
sidered as an alternative to high pressure gases for 
nuclear reactor cooling. The experimental studies of 
Farbar and his co-workers [I, 21, Tien and Quan [3] 
and Danziger [4], among others, provided the engin- 
eering correlations for the convective film coefficient 
of a suspension. A review of most of the experimental 
data and the resulting correlations can be found in 
Pfeffer tlf al. [Sf. Regarding the analytical studies on 
the subject, Tien (61 made the first one for homo- 
geneous suspensions of very low solids content. 
Ozbelge and Sommer ]7] and Michaelides fg] later 
developed different analytical and computational 
models for the heat transfer of suspensions. 

In the case of particulate flows experimental data 
on temperatures of particles and evaporation (or sub- 
limation) rates are non-existent, because of the diffi- 
culty of the measurements. Analyses of homogeneous 
suspension flows, which preclude thermal and hydro- 
dynamic non-equilibrium effects, predominate among 
the analytical approaches to the subject. Regarding 
non-equilibrium flows of droplets and particles a 
study by Whalley et al. [9] treats the subject of droplet 
flow in a gaseous stream of the same material. The 
flow of particles with thermal and hydrodynamic non- 
equilibrium, when there is a temperature step at the 
wall or when hot particles are injected in a developed 
flow is examined in ref. [lo]. 

The present study develops a model for the flow and 
heat transfer of evaporating droplets or sublimating 

particles under conditions of thermal and hydro- 
dynamic non-equilibrium in a duct. The behavior of 
rigid particles in a gaseous stream (of the same or 
different material) is studied, when the velocities and 
temperatures of the two phases are different. In this 
case there is momentum, heat and mass transfer 
between the two phases, which results in the accel- 
eration of the mixture. The emphasis of the study is 
on the rate of phase change of the condensed phase 
as well as on the mechanical and thermal non-equi- 
librium that exists between the two phases, which 
manifests itself in the difference between the velocities 
and the temperatures of the two phases. The rate of 
sublimation (or evaporation) of the dispersed phase 
is calculated and from it the instantaneous mass and 
radii of the particles. Phase velocities and tem- 
peratures are also computed. 

THE SET OF EQUATIONS FOR A SUSPENSION 

The flow of sublimating particles in a duct is 
assumed to be one-dimensional with the model of 
particles bouncing on the walls as described in ref. 
[ 1 I]. For the simplicity of the calculations all particles 
are ascumed to have the same size ; however, the the- 
ory covers the polydisperse suspensions and the model 
can be adjusted to take them into account with minor 
modifications. The diameter of the particles in all cases 
considered is small (d/D cc 1). The gas velocities and 
the Reynolds numbers considered are such that the 
flow is turbulent and the particles are in suspension. 
The particle concentrations by volume are always 
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NOMENCLATURE 

C concentration 

CIJ drag coefficient 
c specific heat 
D diameter 
d diameter of a particle 

FD drag force 

J friction coefficient 
G mass flux 

9 gravity 
h heat transfer coefficient 
h fs latent heat 
k thermal conductivity 
WI mass 
N number of droplets 

AL K4 dimensionless heat ratios 
Nu Nusselt number 
P pressure 
Pr Prandtl number 

Q heat transfer 
r particle radius 
lie Reynolds number 
T temperature 

t time 
u velocity 

Z’f, volume change upon phase 
transformation. 

Greek symbols 
6 specific heat ratio 

P viscosity 
V cinematic viscosity of the gas 

P density 
d Stefan-Boltzmann constant 
T characteristic time of the particles. 

Subscripts 
D pipe diameter 

g gas 

P particles 
W wall 
0 initial. 

Superscripts 
* dimensionless quantities. 

small (<O.Ol), thus ensuring negligible particle inter- The momentum equationsfitr the two phases 
actions. Under these conditions the conservation 
equations for the motion of gas and particles are as 
in the following sections. 

Continuity equation 
A combined equation for the conservation of mass 

of the particles and of the gas may be written as 
follows : 

NU,($cp,r3)+ U,p, = C, = const. (1) 

where N is the number density of the particles (par- 
ticles per m3), which remains constant, U the longi- 
tudinal velocity, p the density, r the radius of the 
particles (variable because of the change of phase) 
and Go the total mass ffux. Subscripts p and g refer 
to the particles and the gas, respectively. In this study 
the density of the particles is assumed to be constant: 
the density of the gaseous phase is given as a function 
of the pressure and the temperature. The continuity 
equation may be written in differential form as 
follows : 

This equation shows that evaporation or sub- 
limation results in an acceleration of the gaseous phase 
(and subsequently of the particles themselves) because 
of the creation of the excess mass of the gas. 

The force balance on a particle of radius r may be 
written as follows in its complete form : 

frrp,,$(r’UJ = FD-_i?ir’%)+$w”p, (!g!!$) 

dU, dCi, 

+6(nc)*.Sr2p, 
s ---- 

’ d” 
dt 

o (tqiiYdt’ 

+ %r3g(f, -P,) (3) 

where g is the acceleration due to gravity and 1’ the 
dynamic viscosity of the gas. 

The left-hand side of the above equation represents 
the instantaneous change of momentum of the 
particle. The first term on the right-hand side rep- 
resents the drag force. The second term is due to the 
pressure gradient; this term is negligible, unless the 
particles are in the presence of very strong pressure 
gradients, a case very seldom met. The third term is 
due to the added mass of the particles because of the 
acceleration of a small quantity of gas with it. This 
term is of importance when the density of the gas is 
comparable to or higher than that of the particles. In 
the cases examined here pJps >> 1 and the added mass 
term is neglected also. The fourth term represents the 
so-called Basset force, which is due to the history of 
the acceleration of the particles. The Basset force may 
become important when the particles are very small ; 
the effects of this force are examined in this study, as 
reported in the section of the results. Finally the last 
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term represents the action of the gravity forces on the 

particles. 

The viscous drag force FD is given by an empirical 
relation in terms of the relative velocity of the particles 

FD = LzCD7[r2pglUg-Upl(Ug-Up) (4) 

where C, is the drag coefficient, a function of the 
Reynolds number of the particles. Since the latter in 
this study can be appreciably greater than 1 we chose 
the following expression from refs. [ 12, 131 : 

c, = ;;- (1 + 0.1 5Re,0.68’) (5) 
P 

where the Reynolds number of the particles is defined 
as usual in terms of the relative velocity of the particles 
and the particle diameter. 

The momentum equation for the gas is used in the 
form of the pressure drop equation as follows : 

(6) 

where D is the diameter of the pipe, x the longitudinal 
distance and f the friction factor for the suspension. 
The latter is different from the friction factor of the gas 
flowing alone, because of the interactions of particles 
with gas and because of bouncing on the walls of the 
duct. The following expression for the friction factor 
f’is adopted, emanating from the study of particle 
flows in ref. [ 1 I] : 

f =tn+0.072**~ 
5s 0 

(74 

where m* is the loading of particles (ratio of solids to 
gas mass fluxes) and f0 the friction factor for the 
gaseous phase flowing alone in the duct, here given by 
the following closure equation : 

f. = 4(0.0014+Re;0~32). (7b) 

The heat transfer and energy equations 

Evaporation of the particles occurs because of the 
heat transfer from the gas to the particles or from the 
hotter walls of the duct to the particles. Convection is 
the predominant mode of heat transfer from the gas 

to the particles and from the wall to the gas, while 
radiation is the predominant mode for the heat trans- 
fer from the wall to the particles. Conduction from 
the walls to the particles is neglected for the following 
two reasons. First, the time of collision of the particles 
with the wall is very small for appreciable amounts of 
energy to be conducted to the particles. Second, the 
particle concentrations (by volume) are very small ; 
therefore at any moment there are very few particles in 
the immediate vicinity of the wall, where any thermal 
interactions by conduction have to take place. For 
simplicity the gaseous phase is considered transparent 
and the particles completely opaque. However, the 
model can be easily modified to take into account the 
effects of a gray gas or partly reflecting particles. 

The velocities of the two-phase mixture are low 

enough, so that critical conditions are not met in the 

flow domain. Therefore, there is no reason to expect 

thermodynamic non-equilibrium between the gaseous 

phase and the particles. This is equivalent to saying 
that frozen flow is not expected in the applications 
considered for this study. In addition the density ratio 
of the condensed to the gaseous phase is very large, 
for the Kelvin-Helmholtz effect [13] to be negligible. 
Hence, the solids temperature is a function of the 
partial pressure of its vapor in the gaseous phase. If 
the gaseous phase is composed of one component (the 
same as that of the sublimating particles), then the 
particle temperature is given as a function of the total 
pressure ; therefore, changes of the pressure result in 
particle temperature changes according to the Clau- 
sius-Clapeyron relation. The rate of change of tem- 
perature is then written as follows : 

dT, _ Trfg dP 

-+ dt h, dt 

where h, is the latent heat of the substance, z’rp the 
volume change upon phase change and T the absolute 
temperature. In the case where the gas is composed of 
more than one substance P should be substituted by 
the partial pressure of the vapor of the condensed 
phase. 

The heat absorbed by the particles is through con- 

vection from the gas and radiation from the walls as 
explained above. The rate of heat flux absorbed by 
the particles is written as follows : 

0, = 4nr2Nh,( T, - T,) +4nr2rrN( T: - T,“) (9) 

where CJ is the Stefan-Boltzmann constant and h, the 

convective heat transfer coefficient for the particles, 
which must be supplied by an empirical relation. The 
problem of inter-particle shadowing is of no import- 
ance in the applications considered here because of 
the low concentrations of the particles. 

The heat flux absorbed by the particles manifests 

itself in two ways: it causes the evaporation of some 
of the mass of the particles or it contributes to the 
change of the temperature of the substance. Thus, one 
may write the following expression for the rate of 

mass per unit volume undergoing phase change : 

0, - Nm,c, 
m, - 

h fs 
(10) 

where h, is the latent heat of the substance (for sub- 
limation or vaporization) and cp the specific heat of 
the particles. Given that the rate of temperature 
change of the particles is controlled by the pressure 
change, as in equation (8), the last two equations yield 
the rate of mass exchange (per unit volume) between 
the condensed and the vapor phase. The latter is 
related to the rate of change of the radius of the 
particles by the mass balance equation 
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dr 
% = -$(Nm,) = -4nr2Nppz. (11) 

Heat flux is also transferred to the gaseous phase 
from the wall at a rate, which is given by the following 
relation : 

(12a) 

where h, is the convective film coefficient, which must 
be given by an empirical relation and D the pipe 
diameter. With the heat fluxes to the particles also 
known, the energy equation for the gaseous phase is 
reduced to an expression for the temperature change 

of the gas 

+4dNh,(T,-T,) (12b) 

where c,,~ is the specific heat of the gas at constant 

pressure. In the above equations the particles are 
assumed to absorb the radiation completely. The 
effects of finite reflectivity can be easily incorporated 
in the heat flux equations by including the appropriate 
reflectivity and absorbtivity coefficients. 

Two closure equations are needed for the two heat 
transfer coefficients h, and h,. In this study the 
expressions advocated in refs. [4, 5, 10, 121 have been 

used 

h, = ~(Z!+O.bRe~’ Pro 33) (13a) 

and 

h, = 0.023%Rei.’ Pr0.4(1 +4Re;0,32 m*6). 

U3b) 

In the above equations k is the gas conductivity, Pr 
the Prandtl number for the gas, Re, the Reynolds 
number based on the gas velocity and the pipe diam- 
eter and 6 the ratio of the specific heat of the particles 
to that of the gas (6 = c,,,‘c,,). The mass flux ratio m* 
(loading of particles) is given in terms of the flow 
variables by the following expression : 

Nm lJ 4/3nr2P NU m* = PP = _P_.P 
P,U&Z Ps(i, 

(14) 

DIMENSIONLESS FORM OF THE EQUATIONS 

The conservation and closure equations of the 
above section constitute a system of simultaneous 
ordinary differential equations. For the solution of 
the system it is necessary to know the initial conditions 
of the two flowing phases. It is desirable to transform 
this initial value problem to a dimensionless set of 
equations. There is a natural time scale to the problem, 
namely the characteristic time of the particles 

T = 4r2p,/l 8p (15) 

which appears in the momentum and energy equa- 
tions of the particles. Since r is a variable in this 
problem and, therefore, cannot be used for making 
the equations dimensionless it was decided to use the 
value ofr at time t = 0 (T” = 4r,&j18~) for obtaining 
the dimensionless time in all the equations. The initial 
values of gas velocity, U,,, and particle radius, rO, 
were used for the transformation of the other flow 
variables. The wall absolute temperature was used 
for making the temperatures dimensionless. Thus, the 
following dimensionless variables have been chosen 
for the transformation of the equations 

(164 

r* = r/r0 (16b) 

u; = U,lCJ,,I, u; = UJU@ (16~) 

T: = TJT,, T,* = TJT,. (1W 

With the choice of the above dimensionless quan- 
tities it is advantageous to make the density dimen- 
sionless also by using the gas density which cor- 
responds to the wall temperature, psw, and the rate of 
change of phase by using the initial characteristic time 
7. of the particles 

P: = PSIPSW (16e) 

and 

(16f) 

Under these conditions the working equations are 

transformed as follows. 

Mass conservation of a/l the species * dr* 
co p3!!!& +ju**p_ 

dt* dt* 

where Co is the initial concentration of the particles, 
equal to 4Nnr:/3. 

Particle momentum equation 

dU,* 1 

dt* 
- r*Z(U~-U~)(1+0.15Re~“X7). (18) 

Energy equation for the gas 

+:COr*‘Nu,(T,*-T,*) (19) 1 
where the Nusselt number for the particles Nu, and 
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the Nusselt number for the pipe Nu, emanate from a 
dimensionless form of equations (13a) and (13b). 

Rate of phase change of the particles 

3 * -iv r**+$N’,r*‘(l -Tz4). (20) 

The dimensionless parameter N, represents a ratio of 

sensible to latent heat and is equal to 

(21a) 

while the parameter Nh represents the ratio of radi- 
ative to latent heat and is equal to 

(21b) 

The product 6Pr (which is equal to c&k) may be 
interpreted as a Prandtl number based on the specific 
heat of the particles. 

Equations (17)-(20) represent the dimensionless 
form of the system of ordinary differential equations 
for the variables lJz, UC, T,* and r*. The other dimen- 

sionless flow variables, such as Tp* and pg* are obtained 
from closure equations for the properties of the spec- 
ies and the conditions for thermodynamic equilibrium 
of the two phases, such as the dimensionless form 
of equation (8). With the initial conditions for the 
velocities and temperatures of the phases and the 
initial radius and number of particles, the above equa- 
tions form a well posed non-linear system, which may 
be solved by a numerical method. 

PARTICULATE FLOW PAST A WALL 

TEMPERATURE STEP 

As an application of the subject of heat transfer in 
suspension flows with phase change we consider the 
case where the wall temperature of the duct undergoes 
a temperature step from T,, to T, at time t = 0. For 
simplicity it is assumed that at t = 0 the solids and gas 
are at thermal and hydrodynamic equilibrium, that is 
the particles and gas velocities and temperatures are 
equal. This equilibrium state arises in the fully 
developed flow of a two-phase mixture with small 
particles. Because the effects of radiation are taken 
into account there is no restriction on the magnitude 
of the temperature step imposed, as for example in 
ref. [lo]. 

When the suspension enters the domain of higher 
temperature T, the gas is heated up and accelerates, 
thus causing the acceleration of the particles. At the 
same time heat is convected to the particles from the 
gas and radiated from the walls of the duct, causing 
some of the particles to sublimate. The phase change 
is a source of mass for the gaseous phase resulting in 

further acceleration of the gas and of the whole mix- 
ture subsequently. The process of phase change and 

acceleration stops when all the condensed phase has 
evaporated and the resulting gas is heated up to the 
wall temperature. It must be pointed out that the 
acceleration of the gas causes a relative velocity 
between the gas phase and the particles; thus, the 
Reynolds number of the particles becomes finite, a 
phenomenon which results in higher acceleration and 
convective heat flux from the gas to the particles. 

RESULTS 

Numerical calculations were made for the tem- 

perature step case based on the model described 
above. The working equations were solved by an 

explicit time-marching scheme. For accuracy and for 
computational stability the time step in this scheme 
was taken as a fraction of the characteristic time of 
the particles r. The results of the computations are 
shown in the figures that follow. 

Figure 1 shows the evolution over time of the 
dimensionless radius of water droplets as they under- 
go a temperature step in the pipe from an initial value 
of T, = 120°C to a value of T,,,, which is shown on 

the graph as a parameter (500, 700 and 1OOOC). The 
value of Co for all the curves is 0.00419. This number 
is obtained by having 10’ droplets of water of initial 
radius 0.1 mm in the flow field ; the initial mass loading 

corresponding to this concentration is 3.74. The com- 
mon characteristics of all three parametric curves are 
that initially the radius decreases at a slower rate and 
finally the rate of decrease becomes very fast. This is 
due to the fact that the mass of a droplet is pro- 
portional to the cube of its radius and, therefore, 
when the droplets become very small a low amount of 
evaporated mass results in a large radius drop. The 
droplets which experience higher wall temperatures 
evaporate faster, as expected. 

Figure 2 depicts the dimensionless temperatures of 
the vapor phase vs the dimensionless time t* for the 
same parameters as Fig. 1. Because temperatures are 
made dimensionless by dividing by the wall tem- 

01 I I I I 
0 1 2 3 

time, t (51 

FIG. 1. Water droplet evaporation for wall temperatures of 
500, 700 and 1000°C with C,, = 0.00419 and Tp = 120°C. 
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dimensionless time, t’ 

FIG. 2. Temperatures of the gaseous phase vs dimensionless 
time with C, = 0.00419 and r, = 120°C. 

dimensionless time , t’ 

FIG. 3. Dimensionless velocities of the two phases for 
T, = 700°C with C,, = 0.00419 and r,, = 120 C. 

perature, the starting points in the three cases are 
different. The curves show a fast increase in the gas 
temperatures initially, followed by a very slow rate of 

increase, and then by a second faster rate, until the 
value 1 (Tp = T,) is reached asymptotically. The first 
fast rate is due to the fact that a great deal of heat is 
absorbed from the wall by the gas and not much from 
the gas by the particles (this, because initially gas and 
particles are at the same temperature and heat transfer 
between the two phases is low). When the gas reaches 
a higher temperature between r,, and r,.,, the con- 
vection of heat from the gas to the particles becomes 
dominant in the heat balance and most of the heat flux 
from the wall to the two-phase mixture is absorbed by 

the droplets. Therefore, the temperature of the vapor 
phase is almost constant as may be seen in the figure. 
When the droplets become very small (and hence the 
convective heat transfer to them becomes very low) 
the rate of increase of the gas temperature is faster. 
High heat transfer is also observed when the droplets 
have evaporated (heat transfer takes place according 
to the single-phase equations) in which case all the 
heat flux is absorbed by the gas. The dimensionless 
temperature then approaches asymptotically its equi- 
librium value 1. It must be pointed out here that 
the calculations showed that the temperature of the 
droplets decreases by a small amount, following the 
pressure, because of the imposed thermodynamic 
equilibrium condition. 

The changes in the vapor temperatures are also 
reflected in the velocities of the two phases. The 
dimensionless velocities of the vapor and of water 
droplets are shown in Fig. 3. This figure is again drawn 
with the initial parameters being the same as in the 
previous two figures. The temperature at the wall is 
700°C. The initial slow velocity increase of the vapor 
phase is due mainly to the slow rise of the vapor phase 
temperature and the evaporation of the droplets. 
Afterwards, there is a rather fast acceleration of the 
gas velocity because its density decreases fast (fol- 
lowing the temperature). From this point onwards all 
the increase of the velocity of the vapor is due to the 

temperature increase of the vapor phase. The velocity 
of the droplets, simply follows the vapor velocity (and 
lags by a small amount as seen in the figure). When 
the radius of the droplets becomes very small the 
droplet velocity is very close to that of the vapor 
(in the figure they almost touch). At this point all 
evaporation has taken place and afterwards there is 
only single-phase flow. This point is shown by an 
asterisk on the figure. 

The influence of the Basset forces on the accel- 
eration of the particles, which is touted to be of 
importance when particle sizes are very small, was also 
determined. The computer algorithm was modified to 
take into account the Basset forces and several runs 
were made with and without the Basset forces for 
comparison. Differences on the instantaneous accel- 

eration of the particles as high as 20% were observed 
by the inclusion of the Basset forces. However, the 
effect of the Basset forces on the integral quantities 
were very small in all the cases examined. For example 
it was found that in all cases the effect of the inclusion 
of Basset forces on the time of droplet evaporation is 
less than 3%, and the effect on the final velocity of the 
particles and gas less than I %. 

Figure 4 shows for the same initial conditions and 
parameters the loading for the three wall temperatures 
of 500, 700 and 1000°C. The loading can be inter- 

time, t (5) 

FIG. 4. The evolution of loading in time for wall temperatures 
of 500,700 and 1000°C with C, = 0.00419 and T,, = 120°C. 
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FIG. 5. The effect of the initial droplet radius on the rate of 
evaporation for T, = 1000°C with C, = 0.00419 and 

r, = 120°C. 

preted as the amount of liquid by mass, which remains 
in the two-phase mixture. It is observed that the load- 
ing decreases very rapidly. Even at the lowest wall 
temperature of 500°C less than 5% of the liquid 
remains after 3 s. 

One parameter, which influences the results of the 
evaporation considerably is the initial radius rr,. In 
the dimensionless representation of the equations it 
appears in the concentration parameter Co and as the 
ratio r,/D in the heat transfer equation. Its influence 
lies in the fact that the heat flux to the particles is 
proportional to the square of the radius, while the 

concentration is proportional to the cube of the radius 
(for this reason the ratio ro/D appears only in the heat 
transfer equation). The effect of the initial radius on 
the evolution of the droplet size is shown in Fig. 5 ; 
the substance is again water and the concentration for 
all three curves is 0.00419. T, is 1000°C for all three 
curves, the initial radii of which are 0.5, 0.1 and 0.01 
mm. It is observed that the originally smaller droplets, 
which have larger total surface area, evaporate in a 
small fraction of the time required by the ones with 
bigger original sizes. 

Computations were also made for evaporating mer- 
cury droplets. Liquid mercury has a density approxi- 
mately 13.5 times that of water and its latent heat of 
vaporization is approximately 9 times smaller than 
that of water. The vapor conductivity and Prandtl 
number of the two substances differ by smaller 
amounts, although mercury vapor is more viscous 
than water vapor. Figure 6 shows the evaporation of 
mercury droplets of different initial radii (1, 0.1 and 
0.01 mm) for a volume concentration of 0.00419. 
Again it is observed that smaller droplets evaporate 
much faster than larger ones, because of the larger 
total surface area. 

Comparisons of the results for the water and mer- 
cury droplets were made. In order to make the com- 
parisons as meaningful as possible the following initial 
parameters were the same in both cases : (a) the num- 
ber of droplets N, (b) the initial radius r0 (the above 
two conditions imply the same initial concentration 

time, t (s) 

FIG. 6. The effect of the initial droplet radius on the rate of 
evaporation for mercury with C, = 0.00419 and T,, = 120°C. 

Co also), (c) the initial loading mf, (d) the initial 
Reynolds number Re, and (e) the temperature step 
(TW - T,,). Thus, the differences in the results 
observed are due to the differences in the properties 
of the two substances and not on the choice of the 
initial conditions. 

Figure 7 shows the evaporation of the droplets of 
the two substances for initial radii of 0.1 mm, N = 1 O9 
particles per cubic meter and temperature step of 
580°C. It is observed that mercury evaporates faster 
than water, although the difference in the total time 
of evaporation is approximately 10%. 

Figure 8 shows the evolution of the dimensionless 
gas velocities for the two substances up to the point 
when the droplets evaporate completely. The con- 
ditions for these calculations are the same as in the 
previous figure, the only difference being that the tem- 
perature step imposed is 380°C. It must be pointed 
out that at the end of the evaporation process the 
dimensionless gas temperature (T,*) for the mercury 
case is 0.83, while that of the water case is 0.74. There- 
fore, it is expected that when equilibrium is reached 
finally in both cases, the dimensionless velocity in the 
water will be about 30% higher than that of mercury. 

The dimensionless gas temperature T: is plotted in 
Fig. 9 for both the substances under the same con- 

0 0.4 0.6 1.2 1.6 

time, t (5) 

FIG. 7. Comparison of evaporation rates for water and 
mercury for a temperature step of 580°C and with 

C, = 0.00419 and r,, = 120°C. 
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time, t Is) 

Fro. 8. Dimensionless velocities for water and mercury dur- 
ing evaporation for a temperature step of 38O’C, with 

C, = 0.00419 and r,, = 120°C. 
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FIG. 9. Dimensionless gas temperatures for water and mer- FIG. I I. The effect of the parameter N, on the rate of 
cury for a temperature step of 380 ‘C, with C, = 0.00419 and evaporation for a wall temperature of 700°C with 

Tr = 12O’C. C, = 0.00419 and r, = 12O’C. 

ditions as in Fig. 8. The points with stars denote the 
end of the evaporation process for the droplets. Above 
the starred points there is single-phase heat transfer. 

One of the parameters which influences the heat 
transfer characteristics of a particulate mixture is the 
ratio of the specific heats 6, which is approximately 
0.48 for water droplets. Figure 10 shows the influence 
of this parameter on the evaporation of droplets. The 
three curves shown are for 6 = 8.6, 2.15 and 0.215 
with T, = 700°C and all the other initial parameters 
as those in Fig. 1. It is seen that a high 6 increases the 
rate of evaporation of the droplets by a considerable 
amount. 

The dimensionless group NM takes into account 
some of the thermal properties of the substances in 
the equation for mass evaporation. The value of this 
group (for T, = 700°C) for water is 1.82 and for 
mercury is 0.446. The influence of this dimensionless 
group alone is shown in Fig. 11, which is drawn for 
N, = 8.5, 1.82 and 0.42. lt is seen that a high N, 
causes an increase in the rate of phase change of the 
particles or droplets, albeit by a small amount. 

CONCLUSIONS 

This paper shows the development of a math- 
ematical model for the motion of particles or droplets 

01 I I 
I 

0 1 2 3 

time, t (5) 
FK. 10. The effect of the parameter 6 on the rate of evap- 
oration for a wall temperature of 7OO”C, with C, = 0.00419 

and T, = 120°C. 

in a duct, while they undergo a phase change. The 
model treats the two phases separately and allows for 
thermal and mechanical non-equilibrium. The con- 
servation and closure equations are derived and trans- 
formed in their dimensionless form. The dimen- 
sionless groups that influence the phase change and 
heat transfer in the two phases include as usual the 
Reynolds, Prandtl and Nusselt numbers for the flow 
as well as three groups related to the properties of the 

two phases, 6, N, and N$. 
The solution of the system of differential equations 

was accomplished for two substances having the prop- 

erties of water and mercury and for the case of a step 
in the wall temperature. The results showed that the 
rate of phase change increases with higher wall tem- 
perature or lower particle diameter as well as with 
higher 6 and NM. The temperature of the gaseous 
phase remains almost constant, during the time when 
phase change occurs and increases rapidly when the 
phase change is completed. Therefore, during most of 
the phase change process the temperatures of both 
phases remain almost constant (although the two are 
different). The velocities of the two phases increased 
considerably in all the cases because of the combined 
effect of evaporation and increase of the gaseous 
temperature. 
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ECOULEMENT AVEC SUBLIMATION ou EVAPORATION DE PARTICULES EN 
SUSPENSION, DANS LE CAS DE NON-EQUILIBRE THERMIQUE ET 

HYDRODYNAMIQUE 

R&urn-n developpe un modtle qui permet de decrire la sublimation d’une particule solide ou 
l’evaporation d’une goutte, dans I’tcoulement d’un gaz. On montre le systeme d’tquations a utiliser pour 
dtcrire le phtnomtne; on ecrit aussi ccs equations dans leur forme non-dimensionnelle. Le systeme 
d’tquations obtenu est resolu numeriquement pour le cas od le melange de deux phases est soumis a un 
saut de temperature de la paroi. On etudie alors d’effet de differents parametres (comme la taille de 
particules, leurs proprittes physiques, I’importance du saut de temperature) sur la vitesse d’tvaporation de 
la phase condenste. Les temperatures et les vitesses de deux phases durant le changement de phase sont 

calcultes et represent&es sur les figures. 

PARTIKELSTROMUNG MIT SUBLIMATION ODER VERDAMPFUNG IN 
THERMISCHEM UND HYDRODYNAMISCHEM NICHTGLEICHGEWICHT 

Zusammenfassung-Es wird ein Model1 entwickelt fur die Beschreibung der Sublimation an Partikeln oder 
der Verdampfung an Tropfen in einer gasfdrmigen Umgebung. Die Erhaltungs- und SchlieB-Gleichungen 
werden entwickelt und in dimensionslose Form gebracht. Das entstehende Gleichungssystem wird numer- 
isch gel&t, und zwar fur den Fall, dal3 das zweiphasige Gemisch einer stufenweisen Erhohung der Wand- 
temperatur ausgesetzt wird. Der EinfluB verschiedener Parameter (PartikelgrGBe, Stoffeigenschaften und 
GroBe der sprunghaften Anderung der Wandtemperatur) auf die Verdampfung der kondensierten Phase 
wird untersucht. Ebenso werden die Temperatur und die Geschwindigkeit der beiden Phasen wlhrend des 

Phasenwechsels berechnet. 

CY6JIWMAHkiR M MCHAPEHME ‘IACTMH B HEPABHOBECHbIX YCJIOBMIX 

AmioTnnnn-Pa3pa60TaHa Monenbann onHcaHHxnpoueccacy6nalrraqaagacTuUHnwucnapeHsnKanenb 
B rasoo6pasnoii CpeAe. BnBt?AeHbI ypaeHeHHn coxpanemin a 3aMbrxaHnR B 6espashiepHoM mine. Hony- 
Yennaa cncreMa ypamiemifi pemena ~ncnemio ana cnyqan, korna ch4ecb neyx r$as nonaepxeaa neiicT- 
BWK) cka%oo6pa3noro pocra TeMneparypbr ~~HKB. BccnenoeaHo BnHnHue HecKonbKsix napaMeTpon 

(TaKsix KaK pa3Mepbl qacmu, &i3wiecKHe ceofimea A BenH =nina cKaqKa TehinepaTypbl creHKn) Ha 

WHTeHCHBHOCTb HCI,a~HH,l KOHAeHCHpOBaHHOii &,3bI. PaCCWTaHb, H ,IpISBeneHb, TeMIIepaTypb, I, CKO- 

poc~~o6e~x@a3 ~npouecce@a3o~oronepexona. 


